Jump to navigation

The University of Arizona Wordmark Line Logo White
College of Engineering
Home
  • Home
  • Give Today
  • Contact Us

Search form

  • About
    • Welcome
    • Advisory Board
    • Contact Us
  • Undergrad Programs
    • Admissions
    • Degrees
    • Courses
    • Advising
    • Scholarships & Financial Aid
    • Research & Internships
    • Student Clubs & Organizations
    • ABET Accreditation
  • Grad Programs
    • Admissions
    • On-Campus Degrees
    • Online Degrees
    • Courses
    • Advising
    • Research Focus Areas
    • Funding
  • Research
    • Focus Areas
    • Centers
    • Inventions
  • Faculty & Staff
    • Faculty Directory
    • Staff Directory
    • Faculty Videos
    • Employee Resources
    • Open Positions
  • Alumni
    • Give Today
  • News & Events
    • ECE News Archive
    • Events
Graduate Programs
Home / Graduate Programs / Courses / Photovoltaic Solar Energy Systems

ECE 514A

Photovoltaic Solar Energy Systems

Spring
Required Course:
No

Course Level

Graduate

Units

3

Prerequisite(s)

Graduate standing

Course Texts

Honsberg, Christiana, and Stuart Bowden. PVCDROM. Solar Power Labs at ASU. Online.

Class text (not required): Applied Photovoltaics 2nd Ed., S.R. Wenham, M.A. Green, M.E. Watt, and R. Corkish, Earthscan, ISBN-13 978-84407-401-3 (2007). 

Recommended:

  • The Physics of Solar Cells, Jenny Nelson, Imperial College Press, 2006.
  • Physics of Solar Cells, 2nd Ed., Peter Wurfel, Wiley-VCH, ISBN: 978-3-527-40857-6 (2009).

Schedule

150 minutes lecture per week; four laboratories per semester

Course Description

This course is intended to provide an introduction to the theory and operation of different types of photovoltaic devices, the characteristics of solar illumination, and the advantages and characteristics of concentrating and light management optics. The physical limits on photovoltaic cell performance and practical device operation will be analyzed. The main device emphasis will focus on different types of silicon photovoltaic cells including crystalline, amorphous, multi-crystalline, and thin film solar cells. An overview of other types of photovoltaic cells including multi-junction III-V, CdTe, CuIn(Ga)Se2, and organics will also be given. A discussion of radiometric and spectral properties of solar illumination will be presented and the impact of these factors on solar cell design will be explored. Techniques for increasing the performance of solar cells by light trapping, photon recycling, and anti-reflection coatings will be covered. The design and operation of imaging and non-imaging concentrators will also be discussed. Basic experiments related to PV cell measurements and the optical properties of concentrators are also planned for the course.

Assessment

  • Homework: 6-7 assignments
  • Laboratory: 4 lab experiments
  • Class Paper: Research paper review
  • Exams: 1 midterm exam, 1 final exam
  • Grading policy: 20% midterm exam, 15% homework, 10% research paper review, 10% lab experiments, 10% system design project, 35% final exam
  • GRAD PROGRAMS
  • Admissions
  • On-Campus Degrees
  • Online Degrees
  • Courses
  • Advising
  • Research Focus Areas
  • Funding
gradadvisor@ece.arizona.edu
  • Cadence University Program Member
  • Employee Resources
The University of Arizona
Department of Electrical & Computer Engineering
1230 E. Speedway Blvd.
P.O. Box 210104
Tucson, AZ 85721-0104
520.621.6193

Facebook YouTube LinkedIn


University Privacy Statement

© 2023 The Arizona Board of Regents on behalf of The University of Arizona.