Jump to navigation

The University of Arizona Wordmark Line Logo White
College of Engineering
Home
  • Home
  • Give Today
  • Contact Us

Search form

  • About
    • Welcome
    • Advisory Board
    • Contact Us
  • Undergrad Programs
    • Admissions
    • Degrees
    • Courses
    • Advising
    • Scholarships & Financial Aid
    • Research & Internships
    • Student Clubs & Organizations
    • ABET Accreditation
  • Grad Programs
    • Admissions
    • On-Campus Degrees
    • Online Degrees
    • Courses
    • Advising
    • Research Focus Areas
    • Funding
  • Research
    • Focus Areas
    • Centers
    • Inventions
  • Faculty & Staff
    • Faculty Directory
    • Staff Directory
    • Faculty Videos
    • Employee Resources
    • Open Positions
  • Alumni
    • Give Today
  • News & Events
    • ECE News Archive
    • Events
Faculty & Staff
Home / Faculty & Staff / Faculty / Narayanan Rengaswamy
Narayanan Rengaswamy
  • narayananr@arizona.edu
    520.626.0737

    ECE 456N

    Narayanan Rengaswamy's website
    Full details at profiles.arizona.edu

Narayanan Rengaswamy

  • Assistant Professor of Electrical and Computer Engineering

PDF icon Narayanan Rengaswamy's Full CV (PDF)

Narayanan Rengaswamy is a tenure-track assistant professor of Electrical and Computer Engineering at the University of Arizona. He also works at the NSF Engineering Research Center for Quantum Networks (CQN) in the university.

From September 2020 to August 2022, he was a postdoctoral research associate with Bane Vasić in the Department of Electrical and Computer Engineering at the University of Arizona. He completed his Ph.D. in Electrical and Computer Engineering at Duke University in May 2020, under the supervision of Henry Pfister and Robert Calderbank, and continued there as a research associate until September 2020. His dissertation was centered on error correction techniques for fault-tolerant quantum computing and quantum communications.

Earlier, he obtained his M.S. in Electrical Engineering from Texas A&M University in Dec. 2015, where he was advised by Henry Pfister and Krishna Narayanan for his thesis on polar codes. During the summer of 2015, he was a graduate research intern at Alcatel-Lucent Bell Labs, Stuttgart, Germany, where he worked on spatially-coupled low-density parity-check codes with Laurent Schmalen and Vahid Aref. He received his B.Tech. in Electronics and Communication Engineering from Amrita University, Coimbatore, India in June 2013.

His current research interests are classical and quantum error correction, quantum computing, quantum networking, and quantum communications. He is a reviewer for several journals and conferences. He served on the Posters Program Committee of the 2022 International Conference on Quantum Computing and Engineering (QCE22). He is a Member of the IEEE.

Degrees

  • PhD: Electrical and Computer Engineering, Duke University, 2020
  • MS: Electrical Engineering, Texas A&M University, 2015
  • BTech: Electronics and Communication Engineering, Amrita University, India, 2013

Teaching Interests

Classical and quantum error correction, quantum computing, information theory, signal processing, communications

Research Interests

Classical and quantum error correction, quantum computing, quantum networking, and quantum communications

Textbooks/Most Significant Publications

  • N. Rengaswamy, "Classical Coding Approaches to Quantum Applications," Ph.D. Dissertation, Duke University, 2020. http://arxiv.org/abs/2004.06834
  • N. Raveendran, N. Rengaswamy, F. Rozpedek, A. Raina, L. Jiang, and B. Vasić, "Finite rate QLDPC-GKP coding scheme that surpasses the CSS Hamming bound,'' Quantum, vol. 6, p. 767, Jul. 2022. https://arxiv.org/abs/2111.07029
  • N. Rengaswamy, K. P. Seshadreesan, S. Guha, and H. D. Pfister, "Belief propagation with quantum messages for quantum-enhanced classical communications,'' npj Quantum Information, vol. 7, no. 1, p. 97, 2021. http://arxiv.org/abs/2003.04356
  • N. Rengaswamy, R. Calderbank, M. Newman, and H. D. Pfister, "On optimality of CSS codes for transversal T,'' IEEE Journal on Selected Areas in Information Theory, vol. 1, no. 2, pp. 499--514, 2020. Selected for a talk at the 2020 Conference on Quantum Information Processing (QIP). http://arxiv.org/abs/1910.09333
  • T. Can, N. Rengaswamy, R. Calderbank, and H. D.Pfister, "Kerdock Codes Determine Unitary 2-Designs,'' IEEE Transactions on Information Theory, vol. 66, no. 10, pp. 6104--6120, 2020. http://arxiv.org/abs/1904.07842
  • N. Rengaswamy, R. Calderbank, S. Kadhe, and H. D. Pfister, "Logical Clifford synthesis for stabilizer codes,'' IEEE Transactions on Quantum Engineering, vol. 1, 2020. http://arxiv.org/abs/1907.00310
  • FACULTY & STAFF
  • Faculty Directory
  • Staff Directory
  • Faculty Videos
  • Employee Resources
  • Open Positions
  • Cadence University Program Member
  • Employee Resources
The University of Arizona
Department of Electrical & Computer Engineering
1230 E. Speedway Blvd.
P.O. Box 210104
Tucson, AZ 85721-0104
520.621.6193

Facebook YouTube LinkedIn


University Privacy Statement

© 2023 The Arizona Board of Regents on behalf of The University of Arizona.